The First Gallium–Arsenic Compound containing a Single Ga₃As Unit: Isolation and Crystal Structure of $[(thf)Br_2Ga]_3As$ (thf = tetrahydrofuran)

Richard L. Wells,* Soheila Shafieezad, Andrew T. McPhail, and Colin G. Pitt*

Department of Chemistry, Paul M. Gross Chemical Laboratory, Duke University, Durham, NC 27706, U.S.A.

 $[(thf)Br_2Ga]_3As$ (thf = tetrahydrofuran), isolated from the products of the reaction of (Me_3Si)_3As with GaBr_3, has been shown by X-ray crystallographic analysis to be the first example of a compound containing a single Ga_3As unit.

Prior to 1986, there were no published examples of galliumarsenic compounds containing a single As₃Ga or Ga₃As unit. However, during that year two compounds of the first type having three-co-ordinate Ga and three-co-ordinate As were reported, $(R_2As)_3Ga$ ($R = mesityl^1$ or Bu^{t2}). We now report the isolation and structure of a compound of the second type having, in this initial case, four-co-ordinate Ga and three-coordinate As, [(thf)Br₂Ga]₃As (thf = tetrahydrofuran) (1). The reaction of (Me₃Si)₃As³ with GaBr₃, which affords the (Br₂Ga)₃As species found in (1), appears to be the first reported of a tri(silyl)arsine being utilized to form the Ga-As linkage, and it further demonstrates the importance of silylarsines in the area of preparative gallium-arsenic chemistry.⁴

A toluene solution of $(Me_3Si)_3As$ (1.39 mmol), cooled to -15 °C, was added[†] to a toluene solution of GaBr₃ (4.18 mmol) at -15 °C. After 15 h at -15 °C, stirring at room temperature for 24 h, and removal of solvent and Me₃SiBr (100% yield) *in vacuo*, a yellow powder was obtained. A thf

Figure 1. ORTEP plot of $[(thf)Br_2Ga]_3As(1)$. Selected distances (Å) and angles (°): Ga–As 2.401(4), Ga–Br(1) 2.321(5), Ga–Br(2) 2.341(7), Ga–O(1) 1.99(2), Ga–As–Ga' 94.4(1), As–Ga–Br(1) 124.0(2), As–Ga–Br(2) 115.4(2), As–Ga–O(1) 102.5(7), Br(1)–Ga–Br(2) 110.5(2), Br(1)–Ga–O(1) 99.2(6), Br(2)–Ga–O(1) 100.1(9).

⁺ All manipulations were performed under a dry nitrogen atmosphere.

solution of the powder at -15 °C afforded, after several days, [(thf)Br₂Ga]₃As (1) as pale yellow crystals (0.37 g, 27% yield).‡

The structure of (1) is illustrated in Figure 1.§ The As atom lies on a crystallographic C_3 axis and, with a Ga–As–Ga' angle of 94.4(1)°, the Ga₃As skeleton is pyramidal. At Ga, the geometry is distorted from tetrahedral in response to the different steric demands of the substituents. Thus, the three smallest bond angles (mean 100.6°) all involve the thf oxygen atom while the larger of the significantly different As–Ga–Br angles [As–Ga–Br(1) 124.0(2)°, As–Ga–Br(2) 115.4(2)°] is associated with the Ga–Br bond which more nearly eclipses an As–Ga bond [dihedral angles: Br(1)–Ga–As–Ga' 16.5°, Br(2)–Ga–As–Ga'' 63.7°]. The Ga–As bond length, 2.404(4) Å, is the shortest distance yet recorded for a bond between a four-co-ordinate Ga and a three-co-ordinate As. It is significantly smaller than that of 2.437(1) Å in {[(Me₃Si-

‡ Compound (1) m.p. 125—145 °C (decomp.). A satisfactory elemental analysis was obtained (C, H, and Br).

§ Crystal data: C₁₂H₂₄AsBr₆Ga₃O₃ (1), M = 979.86, trigonal, space group R3c, a = b = c = 11.765(1) Å, $\alpha = \beta = \gamma = 107.04(1)^\circ$, U = 1354.7 Å³, Z = 2, $D_c = 2.402$ g cm⁻³, μ (Cu- K_{α} radiation, $\lambda = 1.5418$ Å = 154.7 cm⁻¹. Crystal dimensions: $0.20 \times 0.30 \times 0.30$ mm (sealed inside a thin-walled glass capillary). Intensity data (660 independent reflections) were recorded on an Enraf–Nonius CAD-4 diffractometer (Cu- K_{α} radiation, incident-beam graphite monochromator; ω -2θ scans, $\theta_{max} = 55^\circ$). The crystal structure was solved by direct methods. Full-matrix least-squares refinement [375 absorptioncorrected reflections with $I > 3.0\sigma(I)$] of non-hydrogen atom positional and anisotropic thermal parameters converged at R = 0.056[$R_w = 0.071$, $w = 1/\sigma^2(|F_o|)$]. Atomic co-ordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. ! $CH_2_2As]_2GaBr\}_2$ (previously the shortest recorded)^{4b} and much shorter than the shortest [2.475(1)Å] of the two corresponding lengths in the cluster [(PhAsH)(R₂Ga)-(PhAs)₆(RGa)₄] (R = Me₃SiCH₂)⁵ as well as the shortest [2.470(1)Å] of four such distances in {[(Me₃Si-CH₂)₂As]₃Ga}₂.⁶ Interestingly, the Ga-As bond length in (1) is also smaller than the shortest Ga-As distance [2.470(1)Å] in (Mes₂As)₃Ga¹ which contains three-co-ordinate Ga and three-co-ordinate As.

Finally, it should be noted that thus far we have been unsuccessful in our attempts to isolate a monomeric compound containing a Ga_3As unit having three-co-ordinate Ga and As; however, it is expected that with the appropriate substituents on Ga this should be possible.

We thank the Office of Naval Research for financial support.

Received, 29th June 1987; Com. 923

References

- 1 C. G. Pitt, K. T. Higa, A. T. McPhail, and R. L. Wells, *Inorg. Chem.*, 1986, **25**, 2483.
- 2 A. M. Arif, B. L. Benac, A. H. Cowley, R. Geerts, R. A. Jones, K. B. Kidd, J. M. Power, and S. T. Schwab, J. Chem. Soc., Chem. Commun., 1986, 1543.
- 3 V. G. Becker, G. Gutekunst, and H. J. Wessely, Z. Anorg. Allg. Chem., 1980, 462, 113.
- 4 (a) C. G. Pitt, A. P. Purdy, K. T. Higa, and R. L. Wells, Organometallics, 1986, 5, 1266; (b) A. P. Purdy, R. L. Wells, A. T. McPhail, and C. G. Pitt, Organometallics, 1987, 6, 2099.
- 5 R. L. Wells, A. P. Purdy, A. T. McPhail, and C. G. Pitt, J. Chem. Soc., Chem. Commun., 1986, 487.
- 6 R. L. Wells, A. P. Purdy, K. T. Higa, and A. T. McPhail, J. Organomet. Chem., 1987, 325, C7.